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Abstract. A two-dimensional model is derived for anti-symmetric motion in the vicinity of the shear resonance
frequencies in a pre-stressed incompressible elastic plate. The method of asymptotic integration is used and a
second-order solution, for infinitesimal displacement components and incremental pressure, is obtained in terms
of the long-wave amplitude. The leading-order hyperbolic governing equation for the long-wave amplitude is
observed to be not wave-like for certain pre-stressed states, with time and one of the in-plane spatial variables
swapping roles. This phenomenon is shown to be intimately related to the possible existence of negative group
velocity at low wave number, i.e. in the vicinity of shear resonance frequencies.
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1. Introduction

The development and utilisation of lower dimensional (static) structural theories has been
widespread for many years, resulting in such theories as Kirchhoff plate theory, Kirchhoff–
Love shell theory and the refined Timoshenko–Reissner theories. In the case of static prob-
lems, only one type of asymptotic approximation, coupled with careful boundary layer analy-
sis near the edge, is required; see for example [1]. In recent years the asymptotic approach has
started to be extended to the dynamic case, for which high frequency motion is an additional
feature of the problem. Moreover, high-frequency motion will in general consist of both long
and short-wave contributions. A full detailed account of the asymptotic methodology required
to determine the dynamic response of thin-walled elastic structures may be found, in the
context of linear isotropic elasticity, in [2, Chapter 3]. In this present paper we attempt to
develop a model to help elucidate the effects of pre-stress on the dynamic response of an
incompressible elastic plate. Specifically, this will involve deriving a two-dimensional model
to describe three-dimensional anti-symmetric motion in the vicinity of the shear resonance
(cut-off) frequencies.

Largely motivated by the widespread industrial application of rubber-like material, aspects
of the effects of pre-stress on the dynamic properties of incompressible elastic media has been
an area of considerable research activity in recent years, see for example [3–7]. As a specific
application we cite the use of rubber-like components in vibration control devices, especially
as a method of protection against earthquake damage to bridges and tall buildings; see [8].
The main motivation for the present study is to explicate further the effects of pre-stress on
dynamic material characteristics, by developing a greatly simplified two-dimensional theory
which is asymptotically consistent with the three-dimensional theory, which is clearly not
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required in the linear isotropic elastic context. We also remark that, for any general dynamic
loading problem, waves of all wave lengths will contribute to the transient response, as well as
those associated with all dispersion curve branches. For specific loads, or boundary conditions,
motion in the vicinity of the cut-off frequencies may dominate. However, for all loads it will
provide some contribution to transient response and the theory developed will therefore in part
form the basis of possible future hybrid asymptotic-numerical methods to determine transient
response efficiently. In the proposed context, and with pre-stress synthesising a spectrum of
possible material response, some leading to possible loss of infinitesimal stability, the develop-
ment of much faster methods to determine transient response is a highly desirable longer-term
goal. There are also potential applications of this type of motion to fluid-structure interac-
tion, particularly to jumps in radiation power and first-order resonances of high frequency
Lamb waves in scattering; see [9]. A final noteworthy motivation is the possible dominance of
this type of motions in problems with fixed faces, such problems being characterised by the
absence of a fundamental mode; see [10].

In Section 2 of this paper the basic equations of small-amplitude time-dependent mo-
tions super-imposed upon a pre-stressed incompressible elastic solid are briefly reviewed.
An appropriate dispersion relation is derived in Section 3 together with its appropriate ap-
proximations, which help to reveal the asymptotic structure of displacement components and
incremental pressure. Asymptotically approximate equations are established in Section 4 and
these are integrated exactly, in the vicinity of the first family of cut-off frequencies, to derive
a leading-order solution in terms of the long-wave amplitude. A governing equation for the
leading order long-wave amplitude is obtained from the second-order problem, as are higher-
order corrections for the infinitesimal displacement components and incremental pressure.
These solutions are found in terms of both the leading-order long-wave amplitude and its
second-order correction. A higher-order governing equation for the long-wave amplitude is
obtained from the third-order problem. Similar results are given in respect of motion in the
vicinity of the second family of cut-off frequencies.

Some interesting aspects of the governing equation for the long-wave amplitude are espe-
cially noteworthy. The dispersion relations obtainable from both the leading order and second-
order two-dimensional governing equation exactly match appropriate expansions derived from
the exact dispersion relation, demonstrating a high level of consistency. Additionally, it is pos-
sible for the hyperbolic leading order governing equation to become non-wave-like with time
and one of the in-plane spatial variables swapping roles. Such a phenomenon is closely related
to the possible existence of negative group velocity in the vicinity of the cut-off frequency.
This point is illustrated with some numerical examples in respect of both a Mooney-Rivlin
and a Varga material in Section 5.

2. Governing equations

Our concern in this paper is the propagation of infinitesimal waves in a finitely deformed
layer, composed of incompressible elastic material, in particular deriving an asymptotic model
for anti-symmetric (flexural) motion in the vicinity of the thickness shear resonance (cut-off)
frequencies. In particular, this section is devoted to the derivation of equations governing wave
propagation in an unbounded pre-stressed incompressible elastic media. We place the origin
O of a Cartesian coordinate system Ox1x2x3 in the mid-plane of the layer, and assume that
two principal axes of the primary deformation lie in the plane of the layer along Ox1 and
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Ox3, with the third axis Ox2 orthogonal to the layer. It can then be shown, see [11], that the
appropriate equations of motion are

B1111u1,11 + (B1122 + B2112) u2,12 + (B1133 + B3113)u3,13

+B2121u1,22 + B3131u1,33 − pt,1 = ρü1,
(2.1)

(B2211 + B1221)u1,12 + B2222 u2,22 + (B2233 + B3223)u3,23

+B1212u2,11 + B3232u2,33 − pt,2 = ρü2,
(2.2)

(B3311 + B1331)u1,13 + (B3322 +B2332)u2,23 + B3333u3,33

+B1313u3,11 + B2323u3,22 − pt,3 = ρü3,
(2.3)

where Bijkl are the only non-zero components of the associated elasticity tensor, ui , i ∈
{1, 2, 3}, are the infinitesimal displacement components, ρ is the material density and pt is
the incremental time-dependent part of the Lagrange multiplier p = p̄ + pt , with p̄ a static
part associated with the primary deformation. This is essentially a measure of workless reac-
tion stress brought into play by imposing incompressibility, usually interpreted as a pressure.
Throughout this paper, unless otherwise stated, a comma subscript denotes differentiation
with respect to x1, x2 or x3 and a dot denotes time derivative. Under the assumption of incom-
pressibility, the equations of motion (2.1)–(2.3) must be considered in conjunction with the
linearised incompressibility condition

u1,1 + u2,2 + u3,3 = 0. (2.4)

For a detailed account of the background theory of incremental motions superimposed upon
a pre-stressed elastic body the reader is referred to [12, Chapter 6]. Detailed derivation of the
governing equations for a pre-stressed incompressible elastic body is given in [13].

We seek the solutions of (2.1)–(2.4) in form of a travelling harmonic wave

(u1, u2, u3, pt ) = (U1, U2, U3, kP )ekqx2eik(x1cθ+x3sθ−vt), (2.5)

in which k is the wave number, v the wave speed, (cθ , 0, sθ ) = (cos θ, 0, sin θ) is the in-plane
projection of the wave normal and q is to be determined from the governing equations. The
analogous plane strain problem has been previously analysed in [14]. We will therefore con-
centrate on the three-dimensional case and tacitly assume that cθ 
= 0 and sθ 
= 0. Substituting
the solution (2.5) in the system of Equations (2.1)–(2.4), we may derive the equation

γ21γ23q
6 + (

(γ21 + γ23)v̄
2 − c1

)
q4 + (v̄4 − c2v̄

2 + c3)q
2 − (v̄2 − c4)(v̄

2 − c5) = 0, (2.6)

this being the criterion for existence of non-trivial solutions of the form (2.5) (this is true
strictly for an unbounded media, the condition (2.6) being in general only necessary for waves
propagating in a layer). The parameter v̄ ≡ √

ρv will be referred to as the scaled wave speed,
and

c1 = (2β23γ21+γ23+γ31)s
2
θ + (2β12γ23+γ21+γ13)c

2
θ ,

c2 = (2β23+γ21+γ31)s
2
θ + (2β12+γ23+γ13)c

2
θ ,

c3 = (4β12β23 + γ21γ12 + γ23γ32 + γ13γ31 − µ2
13)s

2
θ c

2
θ

+(2β23γ31 + γ21γ32)s
4
θ + (2β12γ13 + γ23γ12)c

4
θ ,

c4 = γ32s
2
θ + γ12c

2
θ , c5 = γ31s

4
θ + 2β13s

2
θ c

2
θ + γ13c

4
θ ,



184 A. V. Pichugin and G. A. Rogerson

in which the material parameters γij , βij , µij are defined through the components of the
elasticity tensor as follows:

γij = Bijij , bij = Biiii − Biijj − Bijji , 2βij = bij + bji, i 
= j,

µij = βij − βik − βjk, i < j, k /∈ {i, j}, i, j, k ∈ {1, 2, 3}.
Let q2

1 , q2
2 , q2

3 denote three distinct non-zero roots of Equation (2.6). Then any solution for
u1, u2, u3 or pt can be represented as a superposition of six linearly independent functions
exp(kqix2) and exp(−kqix2), i ∈ {1, 2, 3} (hereafter, we assume that each qi has positive real
part). In this paper we restrict attention to the case for which u2 is the even function of the
normal coordinate x2. For this type of motion, usually referred to as flexural or anti-symmetric
motion, solutions for u1, u2, u3 or pt can be represented as superpositions of only three linearly
independent functions. The coefficients of these superpositions may all be expressed in terms
of three disposable constants U

(m)

2 , m ∈ {1, 2, 3}, as follows

u1 =
3∑

m=1

iqmU1(qm, v̄)cθ

V(qm, v̄)
Sm(x2)U

(m)
2 , u3 =

3∑
m=1

iqmU3(qm, v̄)sθ

V(qm, v̄)
Sm(x2)U

(m)
2 ,

u2 =
3∑

m=1

Cm(x2)U
(m)

2 pt =
3∑

m=1

qmP (qm, ρv
2)

V(qm, v̄)
Sm(x2)U

(m)

2 , (2.7)

where Sm(x2) = sinh(kqmx2), Cm(x2) = cosh(kqmx2) and

U1(qm, v̄) = γ23q
2
m + µ12s

2
θ − γ13c

2
θ + v̄2,

U3(qm, v̄) = γ21q
2
m − γ31s

2
θ + µ23c

2
θ + v̄2,

P (qm, v̄) = U1(qm, v̄)U3(qm, v̄) + (b31 − b32)U1(qm, v̄)c
2
θ + (b13 − b12)U3(qm, v̄)s

2
θ ,

V(qm, v̄) = (γ21s
2
θ + γ23c

2
θ )q

2
m + v̄2 − c5.

The above representation of P (qm, v̄) has been derived with help of the equality

q2
mU1(qm, v̄)U3(qm, v̄) = −(µ13q

2 + γ32s
2
θ + γ12c

2
θ − v̄2)V(qm, v̄),

which is a direct consequence of Equation (2.6).

3. The dispersion relation

The coordinate system specified previously is such that the layer surfaces are defined by the
outward unit normals nu = (0, 1, 0) and nl = (0,−1, 0) for the upper and lower surface,
respectively. In order to formulate zero incremental surface traction boundary conditions, an
appropriate measure of the surface traction is chosen in the following component form:

τ1 = B2121u1,2 + (B2112 + p̄)u2,1, (3.1)

τ2 = B2211u1,1 + (B2222 + p̄)u2,2 + B2233u3,3 − pt, (3.2)

τ3 = (B2332 + p̄)u2,3 + B2323u3,2; (3.3)

see [11]. In the subsequent analysis we eliminate p̄ in favour of the normal Cauchy stress
component σ2. Since for the present case the coordinate axes are coincident with the principal
axes of static pre-stress, p̄ and σ2 are related through
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p̄ = γ21 − B1221 − σ2 = γ23 − B2332 − σ2.

Inserting the displacement and pressure representations (2.7) into (3.1)–(3.3) and imposing
zero surface traction boundary conditions, a homogeneous system of six linear equations is
derived. For flexural motion three of these are satisfied identically, the remaining three may
be written as

3∑
m=1

T1(qm, v̄)

V(qm, v̄)
Cm(h)U

(m)
2 = 0,

3∑
m=1

qmT2(qm, v̄)

V(qm, v̄)
Sm(h)U

(m)

2 = 0,

3∑
m=1

T3(qm, v̄)

V(qm, v̄)
Cm(h)U

(m)
2 = 0,

(3.4)

where h denotes the half-thickness of the layer and

T1(qm, v̄) = γ21U1(qm, v̄)q
2
m + g1V(qm, v̄),

T2(qm, v̄) = (g1 − µ13)U1(qm, v̄)c
2
θ + (g3 − µ13)U3(qm, v̄)s

2
θ − U1(qm, v̄)U3(qm, v̄),

T3(qm, v̄) = γ23U3(qm, v̄)q
2
m + g3V(qm, v̄),

in which gi = γ2i − σ2,Gi = 2γ2i − σ2, i ∈ {1, 3}.
The homogeneous system of three linear Equations (3.4) possesses a non-trivial solution

provided its determinant is equal to zero, so we require∣∣∣∣∣∣∣∣
T1(q1, v̄)C1(h) T1(q2, v̄)C2(h) T1(q3, v̄)C3(h)

q1T2(q1, v̄)S1(h) q2T2(q2, v̄)S2(h) q3T2(q3, v̄)S3(h)

T3(q1, v̄)C1(h) T3(q2, v̄)C2(h) T3(q3, v̄)C3(h)

∣∣∣∣∣∣∣∣
= 0. (3.5)

Note, that several non-dispersive factors of Equation (3.5) have been omitted. Evaluating the
determinant, and introducing a new function H(qi, qj , v̄), we obtain the dispersion relation

(q2
2 − q2

3 )T2(q1, v̄)H(q2, q3, v̄)q1T1(h) − (q2
1 − q2

3 )T2(q2, v̄)H(q1, q3, v̄)q2T2(h)

+(q2
1 − q2

2 )T2(q3, v̄)H(q1, q2, v̄)q3T3(h) = 0,
(3.6)

which was seemingly first derived, in slightly different notation, in [11]. In (3.6) we have
denoted Tm(h) = tanh(kqmh), m ∈ {1, 2, 3} and

H(qi, qj , v̄) = γ21γ23H1(v̄)q
2
i q

2
j + (v̄2 − c5)(γ21γ23(γ23 − γ21)(q

2
i + q2

j ) − H2(v̄)),

H1(v̄) = (γ23 − γ21)v̄
2 − (γ21(µ12 − γ23 + γ21) + γ23γ31)s

2
θ

+(γ23(µ23 + γ23 − γ21) + γ21γ13)c
2
θ ,

H2(v̄) = γ23g1(µ23c
2
θ − γ31s

2
θ + v̄2) − γ21g3(µ12s

2
θ − γ13c

2
θ + v̄2),

with T2(qi, v̄) given immediately after the system of Equations (3.4).
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3.1. LONG-WAVE HIGH-FREQUENCY APPROXIMATIONS

In order to establish a consistent lower-dimensional theory it is necessary to have deep insight
into the asymptotic structure of the associated solutions. We therefore begin our investi-
gation by deriving appropriate approximations of the dispersion relation to study dynamic
response of three-dimensional theory and, subsequently, to verify the consistency of a lower-
dimensional model. It is well-known that, as the scaled wave number kh → 0, v̄ → ∞ for
all harmonics of the dispersion relation (3.6), see for example [13], with the corresponding
limiting (cut-off) frequencies finite and non-zero. Following [2, Chapter 3], we term this type
of motion as long-wave high-frequency. Thus, to find appropriate asymptotic approximations
of the dispersion relation, we assume that v̄ → ∞ as kh → 0. Analysis of the coefficients of
the cubic (in q2) Equation (2.6) suggests that two of its roots (q2

1 and q2
3 ) are O(v̄2), whereas

the third root q2
2 is O(1). Specifying these roots as power series in v̄2, and substituting them

in Equation (2.6), we may derive the following approximations:

q2
1 = − v̄2

γ21
+ Q

(0)
1s s

2
θ + Q(0)

1s c
2
θ

γ21
−
(
Q(−2)

1s s2
θ + Q(−2)

1c c2
θ

) c2
θ

v̄2
+ O(v̄−4),

q2
2 = 1 + Q(−2)

2s s2
θ + Q(−2)

2c c2
θ − c5

v̄2
+ O(v̄−4)

q2
3 = − v̄2

γ23
+ Q(0)

3s s
2
θ + Q(0)

3c c
2
θ

γ23
−
(
Q(−2)

3s s2
θ + Q(−2)

3c c2
θ

) s2
θ

v̄2
+ O(v̄−4),

(3.7)

in which

Q(0)
1c = 2β12 − γ21,Q

(0)
1s = γ31, Q(0)

3c = γ13, Q(0)
3s = 2β23 − γ23,

Q(−2)
1s = γ31 − γ32 + (µ13 + γ21)

2

γ23 − γ21
, Q(−2)

3c = γ13 − γ12 − (µ13 + γ23)
2

γ23 − γ21
,

Q(−2)
1c = 2β12 − γ21 − γ12, Q(−2)

3c = 2β23 − γ23 − γ32,

Q(−2)
2c = Q(0)

1c + Q(0)
3c − γ12, Q(−2)

1s = Q(0)
1s + Q(0)

3s − γ32.

Corresponding expansions for q1, q2 and q3 are given by

q1 = iv̄√
γ21

−
i
(
Q(0)

1s s
2
θ + Q(0)

1s s
2
θ

)
2
√
γ21 v̄

+ O(v̄−3),

q2 = 1 + Q(−2)
1s s2

θ + Q(−2)
2c c2

θ − c5

2v̄2
+ O(v̄−4),

q3 = iv̄√
γ23

−
i
(
Q(0)

3s s
2
θ + Q(0)

3c c
2
θ

)
2
√
γ23 v̄

+ O(v̄−3).

(3.8)

Equation (2.6) may be treated as quadratic in v̄2. For long-wave high-frequency motion the
wave speed must tend to infinity as kh → 0 and since v̄2 is O(q2

1 ) (or O(q2
3 )), only the wave

speeds associated with q2
1 and q2

3 are of interest, appropriate expansions given by
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v̄2
1 = −γ21q

2
1 + Q(0)

1s s
2
θ + Q(0)

1c c
2
θ +

(
Q(−2)

1s s2
θ + Q(−2)

1c c2
θ

) c2
θ

q2
1

+ O(q−4
1 ), (3.9)

v̄2
3 = −γ23q

2
3 + Q(0)

3s s
2
θ + Q(0)

3c c
2
θ +

(
Q(−2)

3s s2
θ + Q(−2)

3c c2
θ

) s2
θ

q2
3

+ O(q−4
3 ). (3.10)

The two wave speeds associated with q2
2 , are of O(1) and are therefore not relevant for high-

frequency motion. Lack of a third large wave speed associated with q2 is a direct consequence
of imposing the incompressibility constraint, which disabled propagation of any longitudi-
nal wave, see [15], and associated thickness stretch resonance. In an unconstrained material
there is a third possible large speed associated with q2, see for example [16] in respect of a
compressible transversely isotropic elastic plate.

To begin asymptotic analysis of the dispersion relation (3.6) we first introduce a small
parameter η, the ratio of plate half-thickness h and typical wave length l, hence η = h/l = kh.
Recalling that v̄ → ∞ as η → 0, we insert expansions (3.7) and (3.8) into the dispersion
relation (3.6) to obtain

i
(
A

(2)
1 v̄2 + A

(0)
1

)
T1(h) + v̄3

(
A

(5)
2 v̄2 + A

(3)
2

)
T2(h) + i

(
A

(2)
3 v̄2 + A

(0)
3

)
T3(h) ∼ 0, (3.11)

in which the leading-order coefficients A
(2)
1 , A(5)

2 and A
(2)
3 are given by

A
(2)
1 = G2

1(γ23 − γ21)c
2
θ√

γ21
, A

(5)
2 = −(γ23 − γ21), A

(2)
3 = G2

3(γ23 − γ21)s
2
θ√

γ23
,

and the second-order coefficients of (3.11) A(0)
1 , A(3)

2 and A
(0)
3 have the form

A
(0)
1 = G1c

2
θ

2
√
γ21

{(
G1
(
γ21(2γ21 − 6µ12 + γ31) − γ23(4β23 − 4γ23 + 4γ21 + 5γ31)

)
−4γ21(γ23 − γ21)(γ32 − γ31 − γ21 − µ13)

)
s2
θ − 2G1(γ23 − γ21)c5

+
(
G1
(
2γ23(µ23 + γ23 − 2(β12 − γ13)) − (γ23 − γ21)(2β12 + 6γ13 − γ21)

)
+4γ21(γ23 − γ21)Q

(−2)
1c

)
c2
θ

}
,

A
(3)
2 = 1

2

{
(γ23 − γ21)(c4 + c5 − 4σ2)

+(2γ21(µ12 + γ21 − 2(β23 − γ31)) + (γ23 − γ21)(6β23 + γ23 + 7γ31)
)
s2
θ

−(2γ23(µ23 + γ23 − 2(β12 − γ13)) − (γ23 − γ21)(6β12 + γ21 + 7γ13)
)
c2
θ

}
,

A
(0)
3 = G3s

2
θ

2
√
γ23

{(
G3
(
γ23(6µ23 − γ13 − 2γ23) + γ21(4γ23 − 4γ21 + 4β12 + 5γ13)

)
−4γ23(γ23 − γ21)(γ12 − µ13 − γ13 − γ23)

)
c2
θ − 2G3(γ23 − γ21)c5

−
(
G3
(
2γ21(µ12 + γ21 − 2(β23 − γ31)) + (γ23 − γ21)(2β23 + 6γ31 − γ23)

)
−4γ23(γ23 − γ21)Q

(−2)
3s

)
s2
θ

}
,
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with parameters gm and Gm, m ∈ {1, 2, 3}, defined after relations (3.4). We presume that
all of A

(2)
1 , A(0)

1 , A(5)
2 , A(3)

2 , A(2)
3 and A

(0)
3 are generally of O(1). Since q2 is O(1), see (3.8),

T2(h) = O(v̄−1) and consequently the asymptotic equality (3.11) implies T1(h) = O(v̄2) or,
alternatively, T3(h) = O(v̄2).

Suppose T1(h) = O(v̄2), hence the argument of this hyperbolic tangent must be imaginary
and to the leading order equal to i( 1

2 + n)π . Thus we expand the argument in a power series
in small η as follows:

kq1h = i

((
1

2
+ n

)
π + φ

f (2)
1 η2 + φ

f (4)
1 η4 + O(η6)

)
, (3.12)

in which the O(1) parameters φ
f (2)
1 and φ

f (4)
1 are to be determined. The associated expansion

for T1(h) is given by

T1(h) = − i

φ
f (2)
1 η2

+ iφf (4)
1

(φ
f (2)
1 )2

+ O(η2). (3.13)

At this point it is convenient to introduce the parameter -f

1 = √
γ21(

1
2 + n)π , n = 1, 2, 3 . . . ,

the physical interpretation of which is deferred until later. We may now utilise (3.8) and (3.9)
to obtain

q1 = i-f

1√
γ21η

+ iφf (2)
1 η + O(η3), (3.14)

v̄ = -
f

1

η
+
(

√
γ21φ

f (2)
1 + Q(0)

1s s
2
θ + Q(0)

1c c
2
θ

2-f

1

)
η + O(η3). (3.15)

These may now be inserted into (3.8), which allows us to approximate corresponding hyper-
bolic tangents, thus

q2 = 1 + Q(−2)
1s s2

θ + Q(−2)
2c c2

θ − c5

2(-f

1 )
2

η2 + O(η4), (3.16)

T2(h) = η +
(

Q(−2)
2s s2

θ + Q(−2)
2c c2

θ − c5

2(-f

1 )
2

− 1

3

)
η3 + O(η5), (3.17)

q3 = i-f

1√
γ23η

+ O(η) , T3(h) = i tan

(
-

f

1√
γ23

)
+ O(η2). (3.18)

Substituting expansions (3.12)–(3.18) back in the approximation of the dispersion relation
(3.11), we obtain expressions for φf (2)

1 and φ
f (4)
1 in the form

φ
f (2)
1 = G2

1c
2
θ√

γ21(-
f

1 )
3
, (3.19)
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φ
f (4)
1 = φ

f (2)
1

{
5
√
γ21(-

f

1 )
2A

(5)
2

A
(2)
1

(φ
f (2)
1 )2 +

A
(2)
1

(
Q(0)

1s s
2
θ + Q(0)

1c c
2
θ

)
+ A

(0)
1

(-
f

1 )
2A

(2)
1

+-
f

1

(
1

2

((
6Q(0)

1s + Q(0)
3s − γ32

)
s2
θ +

(
6Q(0)

1c + Q(0)
3c − γ12

)
c2
θ − c5

)
A

(5)
2

+2
√
γ21A

(2)
1

(-
f

1 )
2

− A
(2)
3

-
f

1

tan

(
-

f

1√
γ23

)
− A

(5)
2

3
(-

f

1 )
2 + A

(3)
2

)
φ

f (2)
1

A
(2)
1

}
.

(3.20)

It is now possible to employ (3.9) to obtain the appropriate long-wave high-frequency approx-
imation of the dispersion relation, in a form of scaled frequency ω̄ ≡ v̄η as function of η for
each n (note that -f

1 is a function of n, n = 1, 2, 3, . . . ), given by

ω̄2 = (-
f

1 )
2 +

(
F (2)

1c c2
θ + F (2)

1s s2
θ

)
η2 −

(
F (4)

1c c2
θ + F (4)

1s s2
θ

)
c2
θ η

4 + O(η6),

F (2)
1c = 2G2

1

(-
f

1 )
2

+ Q(0)
1c , F (2)

1s = Q(0)
1s ,

(3.21)

F (4)
1c = G2

1

(-
f

1 )
4

(
5G2

1

(-
f

1 )
2

− 4g1 − 2

3
(-

f

1 )
2

)
− Q(−2)

1c

(-
f

1 )
4

(
2σ2G1 − γ21(-

f

1 )
2
)
,

F (4)
1s = 2G2

1G
2
3√

γ23(-
f

1 )
5

tan

(
-

f

1√
γ23

)
−

2
3G

2
1 − γ21Q

(−2)
1s

(-
f

1 )
2

− 2G1

(-
f

1 )
4

(
G1(2g3 + γ23 − γ31 + γ32) + 2γ21D

f

1

)
,

in which

D
f

1 = (γ21 + γ23 − σ2)(µ13 + γ21)

γ23 − γ21
+ γ31 − γ32.

The analogous analysis, applied to the case T3(h) = O(v̄2), delivers another set of fre-
quency approximations, which may be written as

ω̄2 = (-
f

3 )
2 +

(
F (2)

3c c2
θ + F (2)

3s s2
θ

)
η2 −

(
F (4)

3c c2
θ + F (4)

3s s2
θ

)
s2
θ η

4 + O(η6),

F (2)
3c = Q(0)

3c , F (2)
3s = 2G2

3

(-
f

3 )
2

+ Q(0)
3s ,

F (4)
3s = G2

3

(-
f

3 )
4

(
5G2

3

(-
f

3 )
2

− 4g3 − 2

3
(-

f

3 )
2

)
− Q(−2)

3s

(-
f

3 )
4

(
2σ2G3 − γ23(-

f

3 )
2
)
,

F (4)
3c = 2G2

1G
2
3√

γ21(-
f

3 )
5

tan

(
-

f

3√
γ21

)
−

2
3G

2
3 − γ23Q

(−2)
3c

(-
f

3 )
2

− 2G3

(-
f

3 )
4

(
G3(2g1 + γ21 − γ13 + γ12) − 2γ23D

f

3

)
,

(3.22)
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where -
f

3 = √
γ23(

1
2 + n)π , n = 1, 2, 3, . . . , and

D
f

3 = (γ21 + γ23 − σ2)(µ13 + γ23)

γ23 − γ21
+ γ12 − γ13.

3.2. RELATIVE ORDERS OF DISPLACEMENTS

Comparison of the relative orders of the particle displacements not only gives us a clear phys-
ical picture of the structure of this type of motion, but also provides the basis for building a
lower-dimensional asymptotically consistent model. To obtain the relative orders of displace-
ment components and pressure increment for long-wave high-frequency motion we utilise
the approximations (3.6). When the dispersion relation is satisfied, the system of boundary
conditions (3.4) possesses non-trivial solutions, for which the coefficients U

(k)

2 , k ∈ {1, 2, 3},
may be represented in terms of the single constant U(0)

2 as follows

U
(k)

2 = (−1)k
(q2

i − q2
j )H(qi, qj , v̄)V(qk, v̄)

Ck(h)
U

(0)
2 ,

i < j, k /∈ {i, j}, i, j, k ∈ {1, 2, 3}.
(3.23)

We may use (2.7) to find displacements and pressure in terms of U
(0)
2 . In order to compare

their asymptotic orders we determine the orders of the functions occurring in (2.7) and (3.23).
First note that it is the consequence of (3.8) that

S2(x2) = η
x2

h
+ O(η3), C2(x2) = 1 + O(η2), (3.24)

in which we assume that x2/h is O(1). Additionally, our expansions for the first case of
asymptotic balance of the dispersion relation (T1(h) = O(v̄2)) also imply

S1(h) = i(−1)nφf (4)
1 η4 + O(η6), Sm(x2) = i sin

(
-

f

1 x2√
γ2m h

)
+ O(η2),

Cm(x2) = i cos

(
-

f

1 x2√
γ2m h

)
+ O(η2), m ∈ {1, 3},

which together with the approximations (3.14)–(3.18) yields

u1 ∼ O(pt), u2 ∼ ηO(pt ), u3 ∼ η2 O(pt). (3.25)

Repeating the procedure for the second case (T3(h) = O(v̄2)) one may obtain the following
distribution of relative orders of displacements

u1 ∼ η2 O(pt), u2 ∼ ηO(pt ), u3 ∼ O(pt). (3.26)

3.3. PHYSICAL INTERPRETATION

The asymptotic expansions derived in previous sections show that in both cases (T1(h) =
O(v̄2) or T3(h) = O(v̄2)) to leading order the wave normal is given by a non-normalised vec-
tor of the form (cθ ,O(η−1), sθ ), see (3.14). The second component of this vector is large, so
the leading-order direction of wave propagation is normal to plate. The polarisation directions
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for each case are given by (non-normalised) vectors of the form (O(1),O(η),O(η2)) and
(O(η2),O(η),O(1)) respectively, which is suggested by the relative orders of the displace-
ments (3.25) and (3.26). As kh → 0, to leading-order waves travel along the normal direction
and are polarised along one of the in-plane axes of primary deformation. This description
is essentially that of two shear waves, concurring with the previously mentioned fact that
only two shear waves propagate in any direction in an incompressible elastic solid, see [15],
with the longitudinal motion prohibited by the incompressibility constraint. The parameters
-

f
m = √

γ2m(
1
2 + n)π , m ∈ {1, 3}, n = 1, 2, 3, . . . , are the leading orders of the scaled

frequency expansions (3.21) and (3.22), respectively. They define two infinite families of so-
called cut-off frequencies, frequency limits as η → 0. These are in fact natural thickness shear
resonance frequencies of an infinitesimally thin transverse fibre of the layer, which satisfy one
of the eigenvalue problems

γ2mum,22 + ω2um = 0, um,2|x2=±h = 0, m ∈ {1, 3}. (3.27)

4. Asymptotically approximate equations

The information obtained in the previous sections may be used to build a lower-dimensional
model for long wave high-frequency motion. In order to set up the necessary perturbation
scheme we first need to introduce appropriate scales of space and time. Recalling that l denotes
a typical wavelength, and keeping in mind that η = h/l, we may choose the following spatial
scalings

x1 = lξ1, x2 = hξ = lηζ, x3 = lξ3, (4.1)

where ξ1, ζ and ξ3 are new non-dimensional spatial variables. Let us now focus on the first
family of the shear resonance frequencies (ω̄ = -

f

1 ). As expansion (3.15) shows, a typical
(long) wave propagates with scaled speed -

f

1 /η and therefore travels the distance of one wave
length in time lη

√
ρ/-

f

1 . Hence, it is appropriate to rescale time as

t = lη

√
ρ

γ21
τ. (4.2)

According to the distribution of the relative orders (3.25), the displacement components and
pressure increment must have the following asymptotic structure

um(x1, x2, x3t) = lηm−1u∗
m(ξ1, ζ, ξ3, τ ), m ∈ {1, 2, 3},

pt(x1, x2, x3, t) = γ21P
∗
t (ξ1, ζ, ξ3, τ ),

(4.3)

in which ∗ denotes non-dimensional quantities of a same asymptotic order and γ21 is intro-
duced purely for algebraic convenience.

The system of equations of motion (2.1)–(2.3) can now be recast in terms of the non-
dimensional variables, yielding

γ21u
∗
1,ζ ζ + (-

f

1 )
2u∗

1 − {
(-

f

1 )
2u∗

1 + γ21u
∗
1,ττ

}+ η2
(
B1111u

∗
1,ξ1ξ1

+ γ31u
∗
1,ξ3ξ3

+(B1122 + B1221)u
∗
2,ξ1ζ

− γ21P
∗
t,ξ1

)+ η4
(
B1133 + B1331

)
u∗

3,ξ1ξ3
= 0,

(4.4)

B2222u
∗
2,ζ ζ + (-

f

1 )
2u∗

2 − {
(-

f

1 )
2u∗

2 + γ21u
∗
2,ττ

}+ (B1122 + B1221)u
∗
1,ξ1ζ

−γ21p
∗
t,ζ + η2

(
γ12u

∗
2,ξ1ξ1

+ γ32u
∗
2,ξ3ξ3

+ (B2233 + B2332)u
∗
3,ξ3ζ

) = 0,
(4.5)
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γ23u
∗
3,ζ ζ + (-

f

1 )
2u∗

3 − {
(-

f

1 )
2u∗

3 + γ21u
∗
3,ττ

}+ (B1133 + B1331)u
∗
1,ξ1ξ3

− γ21p
∗
t,ξ3

+(B2233 + B2332)u
∗
2,ξ3ζ

+ η2
(
γ13u

∗
3,ξ1ξ1

+ B3333u
∗
3,ξ3ξ3

) = 0,
(4.6)

here comma subscripts denote differentiation with respect to the indicated scaled (space or
time) variable. These equations must be solved in conjunction with the appropriately rescaled
incompressibility condition

u∗
1,ξ1

+ u∗
2,ζ + η2u∗

3,ξ3
= 0, (4.7)

and solved subject to the zero surface traction boundary conditions

γ21u
∗
1,ζ + η2(B1221 + p̄)u∗

2,ξ1
= 0 at ζ = ±1, (4.8)

B1122u
∗
1,ξ1

+ (B2222 + p̄)u∗
2,ζ − γ21p

∗
t + η2B2233u

∗
3,ξ3

= 0 at ζ = ±1, (4.9)

γ23u
∗
3,ζ + (B2332 + p̄)u∗

2,ξ3
= 0 at ζ = ±1. (4.10)

A glance at the boundary-value problem (4.4)–(4.10) exposes, that in order to ensure response
compatible with (3.27), and in view of the approximation (3.21), we require

γ21u
∗
m,ττ + (-

f

1 )
2u∗

m ∼ η2u∗
m, m ∈ {1, 2, 3}, (4.11)

which can also be verified by direct substitution of the travelling wave solution (2.5). Note,
that one of the implications of imposing (4.11) is that all values in braces in system (4.4)–
(4.6) must be considered as O(η2). We now seek the solutions in a form of the power series
expansions

(u∗
1, u

∗
2, u

∗
3, p

∗
t ) =

m∑
n=0

η2n
(
u

∗(2n)
1 , u

∗(2n)
2 , u

∗(2n)
3 , P

∗(2n)
t

)
+ O(η2m+2). (4.12)

It must be remarked that, although in general the remainder estimate will be of the order
indicated in (4.12), for certain combinations of material and pre-stress parameters it is possible
that the order of this correction term is modified. In practical applications care should be
taken to ensure that all of the requirements inherent in the model are satisfied or to adjust
the model accordingly. Notwithstanding these comments, the situation indicated in solutions
(4.12) is the most likely to occur. Inserting these solutions into Equations (4.4)–(4.10) we
obtain hierarchical systems of essentially ordinary differential equations at various orders.

4.1. LEADING-ORDER PROBLEM

The leading-order equations of motion

γ21u
∗(0)
1,ζ ζ + (-

f

1 )
2u

∗(0)
1 = 0, (4.13)

B2222u
∗(0)
2,ζ ζ + (-

f

1 )
2u

∗(0)
2 + (B1122 + B1221)u

∗(0)
1,ξ1ζ

− γ21P
∗(0)
t,ζ = 0, (4.14)

γ23u
∗(0)
3,ζ ζ + (-

f

1 )
2u

∗(0)
3 + (B1133 + B1331)u

∗(0)
1,ξ1ξ3

+(B2233 + B2332)u
∗(0)
2,ξ3ζ

− γ21P
∗(0)
t,ξ3

= 0,
(4.15)
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must be solved in conjunction with the leading-order incompressibility

u
∗(0)
1,ξ1

+ u
∗(0)
2,ζ = 0, (4.16)

subject to the leading-order boundary conditions

γ21u
∗(0)
1,ζ = 0 at ζ = ±1, (4.17)

(B2222 + p̄)u
∗(0)
2,ζ + B1122u

∗(0)
1,ξ1

− γ21P
∗(0)
t = 0 at ζ = ±1, (4.18)

γ23u
∗(0)
3,ζ + (B2332 + p̄)u

∗(0)
2,ξ3

= 0 at ζ = ±1. (4.19)

The solution of the boundary-value problem (4.13), (4.17) is given by

u
∗(0)
1 = u

∗(0,0)
1 sin

(
-

f

1 ζ√
γ21

)
, (4.20)

in which the function with double superscript does not depend on ζ . Hereafter, double su-
perscripts will denote functions independent of ζ , with first superscript referring to the order
of the approximation and the second denoting the power of any possible ζm multiplier. Note,
that our choice of scaling ensures that the displacement components and pressure vary ap-
propriately for flexural motion, i.e. as an anti-symmetric (u∗

1, u∗
3 and p∗

t ) or a symmetric (u∗
2)

function of the normal coordinate ζ . Thus, for the sake of brevity, we will always omit terms
of the solutions which do not comply to this requirement.

Substituting the solution (4.20) in the incompressibility condition (4.16) we may establish
the form of the expression for u∗(0)

2

u
∗(0)
2 = u

∗(0,0)
2 cos

(
-

f

1 ζ√
γ21

)
+ U

∗(0,0)
2 , U

∗(0,0)
2 = γ21

-
f

1

u
∗(0,0)
1,ξ1

. (4.21)

Solutions (4.20) and (4.21), that the solution of the second equation of motion (4.14) should
be sought in the following form

γ21p
∗(0)
t = p

∗(0,0)
t sin

(
-

f

1 ζ√
γ21

)
+ P

∗(0,1)
t ζ,

p
∗(0,0)
t = (γ21 − b21)u

∗(0,0)
1,ξ1

, P
∗(0,1)
t = (-

f

1 )
2u

∗(0,0)
2 ,

(4.22)

whereas the boundary condition (4.18) yields

U
∗(0,0)
2 = − G1

(-
f

1 )
2
u

∗(0,0)
1,ξ1

sin

(
-

f

1√
γ21

)
.

The leading order problem for u∗
3 is given by (4.15), (4.19). The result of substitution of the

previously established solutions (4.20), (4.21) and (4.22) in Equation (4.15) indicates that u∗(0)
3

may be represented as

u
∗(0)
3 = u

∗(0,0)
3 sin

(
-

f

1 ζ√
γ21

)
+ υ

∗(0,0)
3 sin

(
-

f

1 ζ√
γ23

)
+ U

∗(0,1)
3 ζ,

U
∗(0,1)
3 = − G1

(-
f

1 )
2
u

∗(0,0)
1,ξ1ξ3

sin

(
-

f

1√
γ21

)
.

(4.23)
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Finally, we utilise appropriate boundary condition (4.19) to find

u
∗(0,0)
3 = − γ21(µ13 + γ21)

(γ23 − γ21)(-
f

1 )
2
u

∗(0,0)
1,ξ1ξ3

,

υ
∗(0,0)
3 = G1G3√

γ23 (-
f

1 )
3
u

∗(0,0)
1,ξ1ξ3

sin

(
-

f

1√
γ21

)
sec

(
-

f

1√
γ23

)
.

Thus, the leading-order solutions for the displacement components u∗
i , i ∈ {1, 2, 3} and

pressure p∗
t are obtained in terms of a function u

∗(0,0)
1 = u

∗(0,0)
1 (ξ1, ξ3, τ ) and its derivatives.

We remark that u
∗(0,0)
1 alone specifies the long-wave high-frequency motion at the leading

order, and term it the leading order long-wave amplitude. This function can not be determined
without resorting to the higher order.

4.2. SECOND-ORDER PROBLEM

At second order we only consider the first two second-order equations of motion

γ21u
∗(2)
1,ζ ζ + (-

f

1 )
2u

∗(2)
1 = −B1111u

∗(0)
1,ξ1ξ1

− γ31u
∗(0)
1,ξ3ξ3

−(B1122 + B1221)u
∗(0)
2,ξ1ζ

+ γ21P
∗(0)
t,ξ1

+ η−2
(
γ21u

∗(0)
1,ττ + (-

f

1 )
2u

∗(0)
1

)
,

(4.24)

B2222u
∗(2)
2,ζ ζ + (-

f

1 )
2u

∗(2)
2 + (B1122 + B1221)u

∗(2)
1,ξ1ζ

− γ21p
∗(2)
t,ζ = −γ12u

∗(0)
2,ξ1ξ1

−γ32u
∗(0)
2,ξ3ξ3

− (B2233 + B2332)u
∗(0)
3,ξ3ζ

+ η−2
(
γ21u

∗(0)
2,ττ + (-

f

1 )
2u

∗(0)
2

)
,

(4.25)

which must be solved in association with the second-order incompressibility condition

u
∗(2)
1,ξ1

+ u
∗(s)
2,ζ = −u

∗(0)
3,ξ3

, (4.26)

and the appropriate boundary conditions

γ21u
∗(2)
1,ζ = −(B1221 + p̄ )u

∗(0)
2,ξ1

at ζ = ±1, (4.27)

(B2222 + p̄ )u
∗(2)
2,ζ + B1122u

∗(2)
1,ξ1

− γ21p
∗(2)
t = −B2233u

∗(0)
3,ξ3

at ζ = ±1. (4.28)

Substitution of the leading order displacements and pressure, see (4.20), (4.21) and (4.22),
in the first second-order equation of motion (4.24) and satisfaction of the corresponding
boundary condition (4.27), immediately yields

u
∗(2)
1 = u

∗(2,0)
1 sin

(
-

f

1 ζ√
γ21

)
+ u

∗(2,1)
1 ζ cos

(
-

f

1 ζ√
γ21

)
+ U

∗(2,1)
1 ζ,

u
∗(2,1)
1 = − G2

1√
γ21 (-

f

1 )
3
u

∗(0,0)
1,ξ1ξ1

, U
∗(2,1)
1 = − G1

(-
f

1 )
2
u

∗(0,0)
1,ξ1ξ1

sin

(
-

f

1√
γ21

)
.

(4.29)

The solution (4.29) is valid provided

γ21u
∗(0,0)
1,ττ + (-

f

1 )
2u

∗(0,0)
1 − η2

(
F (2)

1c u
∗(0,0)
1,ξ1ξ1

+ F (2)
1s u

∗(0,0)
1,ξ3ξ3

)
= 0. (4.30)
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The functions of a material parameters and pre-stress F
(2)
1c and F

(2)
1s were defined previously

and are given directly after the first scaled frequency expansion (3.21).
The incompressibility condition (4.26) is then considered to obtain the form of the solution

for u∗(2)
2 , which may be expressed as

u
∗(2)
2 = u

∗(2,0)
2 cos

(
-

f

1 ζ√
γ21

)
+ u

∗(2,1)
2 ζ sin

(
-

f

1 ζ√
γ21

)
+ v

∗(2.0)
2 cos

(
-

f

1 ζ√
γ23

)

+U
∗(2,2)
2 ζ 2 + U

∗(2,0)
2 ,

(4.31)

where

u
∗(2,0)
2 =

√
γ21

-
f

1

u
∗(2,0)
1,ξ1

− γ 2
21(µ13 + γ21)√

γ21(γ23 − γ21)(-
f

1 )
3
u

∗(0,0)
1,ξ1ξ3ξ3

+
√
γ21G

2
1

(-
f

1 )
5

u
∗(0,0)
1,ξ1ξ1ξ1

,

u
∗(2,1)
2 = G2

1

(-
f

1 )
4
u

∗(0,0)
1,ξ1ξ1ξ1

, v
∗(2,0)
2 = G1G3

(-
f

1 )
4
u

∗(0,0)
1,ξ1ξ3ξ3

sin

(
-

f

1√
γ21

)
sec

(
-

f

1√
γ23

)
,

U
∗(2,2)
2 = G1

2(-f

1 )
2

(
u

∗(0,0)
1,ξ1ξ1ξ1

+ u
∗(0,0)
1,ξ1ξ3ξ3

)
sin

(
-

f

1√
γ21

)
.

We mention that, in fact, the leading order of every displacement component and pressure
can be expressed as a linear function of the leading order long-wave amplitude u

∗(0,0)
1 and its

derivatives. As a consequence the equality (4.30) is also valid for u∗
i , i ∈ {1, 2, 3}, and p∗

t ,
hence the O(η−2) term in Equation (4.25) can be represented without time derivatives, which
enables us to determine the solution for p∗(2)

t in the form

γ21p
∗(2)
t = p

∗(2,0)
t sin

(
-

f

1 ζ√
γ21

)
+ p

∗(2,1)
t ζ cos

(
-

f

1 ζ√
γ21

)
+ p̃

∗(2,0)
t sin

(
-

f

1 ζ√
γ23

)

+P
∗(2,3)
t ζ 3 + P

∗(2,1)
t ζ.

(4.32)

The functions p
∗(2,0)
t , p∗(2,1)

t , p̃∗(2,0)
t and P

∗(2,3)
t can now be obtained by inserting (4.32) into

the second equation of motion (4.25), yielding

p
∗(2,0)
t = (γ21 − b21)u

∗(2,0)
1,ξ1

− γ21

(-
f

1 )
2

(
(µ13 + γ21)(γ21 − b23)

γ23 − γ21
+ γ31 − γ32

)
u

∗(0,0)
1,ξ1ξ3ξ3

−γ21Q
(−2)
1c

(-
f

1 )
2

u
∗(0,0)
1,ξ1ξ1ξ1

, p
∗(2,1)
t = −G2

1(γ21 − b21)√
γ21 (-

f

1 )
3

u
∗(0,0)
1,ξ1ξ1ξ1

,

p̃
∗(2,0)
t = G1G3(γ23 − b23)√

γ23 (-
f

1 )
3

u
∗(0,0)
1,ξ1ξ3ξ3

sin

(
-

f

1√
γ21

)
sec

(
-

f

1√
γ23

)
,

P
∗(2,3)
t = G1

6

(
u

∗(0,0)
1,ξ1ξ1ξ1

+ u
∗(0,0)
1,ξ1ξ3ξ3

)
sin

(
-

f

1√
γ21

)
.

Satisfying the boundary condition (4.28), we have
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P
∗(2,1)
t = sin

(
-

f

1√
γ21

){(
G1

(
g1 + b21

(-
f

1 )
2

− 1

6

)
+ γ21Q

(−2)
1c

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ1ξ1

− G1u
∗(2,0)
1,ξ1

+
(
G1

(
g3 + b23

(-
f

1 )
2

− 1

6

)
− G1G

2
3√

γ23 (-
f

1 )
3

tan

(
-

f

1√
γ23

)
+ γ21D

f

1

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ3ξ3

}
,

which, after resorting back to (4.25), returns the last unknown function of the u
∗(2)
2 represen-

tation, expressed here as

U
∗(2,0)
2 = 1

(-
f

1 )
2

{(
G1

(
g1

(-
f

1 )
2

− 2G2
1

(-
f

1 )
4

− 1

6

)
− g1Q

(−2)
1c

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ1ξ1

+
(
G1

(
g3 − γ31 + γ32

(-
f

1 )
2

− 1

6

)
− G1G

2
3√

γ23(-
f

1 )
3

tan

(
-

f

1√
γ23

)

+γ21D
f

1

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ3ξ3

− G1u
∗(2,0)
1,ξ1

}
sin

(
-

f

1√
γ21

)
.

Let us take a closer look at Equation (4.30). Its satisfaction ensures the existence of the so-
lution for the second-order problem and its solution u

∗(0,0)
1 completely determines the leading

order stressed state; see (4.20)–(4.23). We will refer to Equation (4.30) as the leading-order
governing equation for the long-wave amplitude. It can also be rewritten in terms of the
original non-scaled variables as[

ρh2 ∂2

∂t2
+ (-

f

1 )
2

]
u
(0,0)
1 − h2

(
F (2)

1c

∂2u
(0,0)
1

∂x2
1

+ F (2)
1s

∂2u
(0,0)
1

∂x2
3

)
= 0. (4.33)

within which u
(0,0)
1 (x1, x3, t) ≡ u

∗(0,0)
1 (ξ1, ξ3, τ ). The solution (2.5), when substituted in

(4.33), yields a dispersion relation which matches the expansion (3.21), thus demonstrating a
high level of consistency.

When F (2)
1c and F (2)

1s are positive, the leading-order governing equation for the long wave
amplitude (43) is hyperbolic. However, it is possible (and is demonstrated later numerically)
to choose such combinations of the material and pre-stress parameters that F (2)

1c will become
negative. However, although (4.33) remains hyperbolic, it will certainly be non-wave-like,
with time and one of the in-plane spatial variables swapping their roles. This behaviour is
closely related to the phenomenon of negative group velocity. In the present case this phe-
nomenon is a necessary, but not sufficient, condition for a non-wave-like hyperbolic equation.
It has previously been remarked that in the plane-strain case the existence of negative group
velocity is both necessary and sufficient to lose hyperbolicity; see [16].

4.3. THIRD-ORDER PROBLEM

The third-order problem will be solved only for the first third-order equation of motion

γ21u
∗(4)
1,ζ ζ + (-

f

1 )
2u

∗(4)
1 = −(B1133 + B1331)u

∗(0)
3,ξ1ξ3

− B1111u
∗(2)
1,ξ1ξ1

− γ31u
∗(2)
1,ξ3ξ3

−(B1122 + B1221)u
∗(2)
2,ξ1ζ

+ γ21P
∗(2)
t,ξ1

+ η−2
(
γ21u

∗(2)
1,ττ + (-

f

1 )
2u

∗(2)
1

)
,

(4.34)

and the associated boundary condition
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γ21u
∗(4)
1,ζ + (B1221 + p̄ )u

∗(2)
2,ξ1

= 0. (4.35)

In view of the results obtained at previous orders, the solution of (4.34) may be sought in the
form

u
∗(4)
1 = u

∗(4,0)
1 sin

(
-

f

1 ζ√
γ21

)
+ u

∗(4,1)
1 ζ cos

(
-

f

1 ζ√
γ21

)
+ u

∗(4,2)
1 ζ 2 sin

(
-

f

1 ζ√
γ21

)

+v
∗(4,0)
1 sin

(
-

f

1 ζ√
γ23

)
+ U

∗(4,3)
1 ζ 3 + U

∗(4,1)
1 ζ.

(4.36)

By substituting (4.36) in the first equation of motion (4.34) and followed by a comparison
of the coefficients of linearly independent terms, it is possible to obtain

u
∗(4,2)
1 = − G4

1

2γ21(-
f

1 )
6
u

∗(0,0)
1,ξ1ξ1ξ1ξ1

,

v
∗(4,0)
1 =

√
γ23G1G3(µ13 + γ23)

(γ23 − γ21)(-
f

1 )
5

u
∗(0,0)
1,ξ1ξ1ξ3ξ3

sin

(
-

f

1√
γ21

)
sec

(
-

f

1√
γ23

)
,

U
∗(4,1)
1 = 1

(-
f

1 )
2

{(
G1

(
g1

(-
f

1 )
2

− 2G2
1

(-
f

1 )
4

− 1

6

)
+ g1Q

(−2)
1c

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ1ξ1ξ1

+
(
G1

(
g3 − µ13 − γ21

(-
f

1 )
2

− 1

6

)
− G1G

2
3√

γ23(-
f

1 )
3

tan

(
-

f

1√
γ23

)

+γ21D
f

1

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ3ξ3

− G1u
∗(2,0)
1,ξ1ξ1

}
sin

(
-

f

1√
γ21

)
,

U
∗(4,3)
1 = G1

6(-f

1 )
2

(
u

∗(0,0)
1,ξ1ξ1ξ1ξ1

+ u
∗(0,0)
1,ξ1ξ1ξ3ξ3

)
sin

(
-

f

1√
γ21

)
.

The boundary condition (4.35) is then used to establish

u
∗(4,1)
1 = G1√

γ21(-
f

1 )
3

{(
G1

(
2g1

(-
f

1 )
2

− 3
G2

1

(-
f

1 )
4

+ 1

3

)
+ σ2Q

(−2)
1c

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ1ξ1ξ1

+
(
G1

(
2g3 + γ23 − γ31 + γ32

(-
f

1 )
2

+ 1

3

)
− G1G

2
3√

γ23(-
f

1 )
3

tan

(
-

f

1√
γ23

)

+2γ21D
f

1

(-
f

1 )
2

)
u

∗(0,0)
1,ξ1ξ1ξ3ξ3

− G1u
∗(2,0)
1,ξ1ξ1

}
.

As was the case with the second-order problem, the solution for u
∗(4)
1 given by (4.36) is

only valid provided an additional condition is satisfied, which is

γ21u
∗(2,0)
1,ττ + (-

f

1 )
2u

∗(2,0)
1 − η2

(
F (2)

1c u
∗(2,0)
1,ξ1ξ1

+ F (2)
1s u

∗(2,0)
1,ξ3ξ3

+F (4)
1c u

∗(0,0)
1,ξ1ξ1ξ1ξ1

+ F (4)
1s u

∗(0,0)
1,ξ1ξ1ξ3ξ3

)
= 0,

(4.37)
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Let us introduce a new function

u = u(0) + u(2)η2 + O(η4) , u∗ = u∗(0) + u∗(2)η2 + O(η4), (4.38)

in which u(x1, x3, t) = u∗(ξ1, ξ3, τ ) and for the first family of the shear resonance frequencies
we assume u(2m) = u

∗(2m,0)
1 . The fact that the function u∗(2m,0) is essentially the solution of all

boundary-value problems posed for u∗(2m−2,0)
1 , m = 1, 2, 3 . . . , means that every displacement

component and pressure is the linear function of u and its derivatives. Therefore, we will term
u as the long-wave amplitude. Now, if we add the leading-order governing equation (4.30) to
the product of η2 and (4.37), we obtain a second order governing equation, which is given in
terms of original variables and long-wave amplitude as[
ρh2 ∂2

∂t2
+ (-

f

1 )
2

]
u − h2

(
F (2)

1c

∂2u

∂x2
1

+ F (2)
1s

∂2u

∂x2
3

)
− h4

(
F (4)

1c

∂4u

∂x4
1

+ F (4)
1s

∂4u

∂x2
1x

2
3

)
= 0. (4.39)

The dispersion relation associated with this equation matches the third-order approxima-
tion of the exact dispersion relation (3.21) exactly.

4.4. SECOND FAMILY OF SHEAR RESONANCE FREQUENCIES

The analysis of the asymptotic behaviour of a plate in the vicinity of the second family of
shear resonance frequencies is very similar to the case just discussed. The space and time
coordinates are to be re-scaled according to (4.1) and

t = lη

√
ρ

γ23
τ, (4.40)

with displacements, whose scalings are chosen to coincide with (3.26), thus

um(x1, x2, x3, t) = lη3−mu∗
m(ξ1, ζ, ξ3, τ ), m ∈ {1, 2, 3},

pt (x1, x2, x3, t) = γ23p
∗
t (ξ1, ζ, ξ3, τ ).

(4.41)

The consequent derivation yields the leading and second-order governing equations for a
long-wave amplitude, given by[

ρh2 ∂2

∂t2
+ (-

f

3 )
2

]
u
(0,0)
3 − h2

(
F (2)

3c

∂2u
(0,0)
3

∂x2
1

+ F (2)
3s

∂2u
(0,0)
3

∂x2
3

)
= 0, (4.42)

[
ρh2 ∂2

∂t2
+ (-

f

3 )
2

]
u − h2

(
F (2)

3c

∂2u

∂x2
1

+ F (2)
3s

∂2u

∂x2
3

)
− h4

(
F (4)

3c

∂4u

∂x4
1

+ F (4)
3s

∂4u

∂x2
1x

2
3

)
= 0, (4.43)

where F (2)
3c , F (2)

3s , F (4)
3c and F (4)

3s were given immediately after the expansion (3.22) and we
assume u(2m) = u

∗(2m,0)
3 in the definition (4.38). The dispersion relation associated with this

equation is consistent with the exact dispersion relation (3.6) in the sense that it matches all
three orders of the frequency expansion (3.22) exactly (first two orders in case of the leading
order governing equation (4.42)). As for the existence of negative group velocity, it may also
occur for the second family of shear resonance frequencies, with the necessary condition given
by F (2)

3s < 0.
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Figure 1. Scaled frequency of the first three harmonics associated with the first family of shear resonances, shown
against scaled wave number kh together with their second- and third-order approximations. Waves propagate in
the Mooney-Rivlin material with µ1 = 3·0, µ2 = 1·1, γ1 = 0·9, γ2 = 1·2, σ2 = 5·5 and θ = 15◦.

Figure 2. Scaled frequency of the first three harmonics associated with the first family of shear resonances, shown
against scaled wave number kh together with their second- and third-order approximations. Waves propagate in
the Mooney-Rivlin material with µ1 = 3.0, µ2 = 1·1, λ1 = 0·9, λ2 = 1·2, σ2 = 5·5 and θ = 15◦.

5. Numerical results and discussion

Some illustrative numerical results are now presented in respect of the Mooney-Rivlin strain-
energy function

W = µ1

2
(λ2

1 + λ2
2 + λ2

3 − 3) + µ2

2
(λ−2

1 + λ−2
2 + λ−2

3 − 3), (5.1)

in which µ1 is the shear modulus, µ2 characterises the departure from the symmetric neo-
Hookean model and λm, m ∈ {1, 2, 3}, are the principal stretches of primary deformation. The
components of the elasticity tensor associated with the strain energy (5.1) are given by

Biiii = (µ1 + µ2(λ
2
j + λ2

k))λ
2
i , Biijj = 2µ2λ

2
i λ

2
j , Bijji = −µ2λ

2
i λ

2
j ,

Bijij = (µ1 + µ2λ
2
k)λ

2
i , i 
= j 
= k 
= i, i, j, k ∈ {1, 2, 3}.

In Figure 1, ω̄ is shown as a function of kh. Specifically, the numerical solution and both
the second and third-order approximations are presented in respect of the first three harmonics
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associated with first family of shear resonances. It is easy to see that the accuracy of the
approximation in general increases considerably for the second (and further) harmonic. This
is because the third order term in the frequency expansion is divided by (-

f

1 )
2, which is O(n2).

It is worth noting that the left-most plot in Figure 1 depicts a situation when the second order
approximation is apparently better then the third order. However, direct comparing of absolute
errors for both second- and third-order approximations can be used to demonstrate that the
third order approximation is better for all kh � 0·2 and therefore for all kh � 1. It is worth
reiterating that all our approximations were obtained for kh � 1 and they, as any asymptotic
expansions, may, but should not be expected to, provide good approximation outside their
destined domain of validity.

In view of the fact that the dynamic response of a Mooney-Rivlin is somewhat limited, see
e.g. [7], we also demonstrate some typical plots in respect of the Varga strain energy function

W(λ1, λ2, λ3) = 2µ(λ1 + λ2 + λ3 − 3), (5.2)

where µ is shear modulus. The associated non-zero components of Bmilk may be obtained as
follows

Bijij = 2µλ2
i

λi + λj

, Bijji = −2µλiλj

λi + λj

, i 
= j, i, j ∈ {1, 2, 3}. (5.3)

In Figure 2 the numerical solution and both the second and third-order approximations are
presented for the three harmonics associated with first family of shear resonance frequencies.
We mentioned previously that for certain combinations of the pre-stress and material parame-
ters it is possible to obtain negative group velocity at low wave number, corresponding to ω̄

being a decreasing function of wave number for kh ∼ 0. The phenomenon of negative group
velocity is well-known in many areas of physics dealing with dispersive waves, in particu-
lar in optics where it is associated with so called anomalous dispersion. Seemingly the first
mentioning of possible negative group velocity at low wave number for some high frequency
modes in an isotropic elastic plate was given in [17]. There is also some experimental work
claiming to observe it for ultrasound waves; see [18]. For the first family of shear resonance
frequencies, existence of negative group velocity will arise for small kh whenever

F (2)
1 ≡ F (2)

1c c2
θ + F (2)

1s s2
θ < 0, (5.4)

see (3.21). Note, that for physically realistic response F (2)
1s is always positive, which can be

shown by taking q = 0 and sθ = 0 in Equation (2.6). Hence, F (2)
1c < 0 is the necessary

condition for the existence of negative group velocity. It is important to keep in mind that
F (2)

1c < 0 also indicates that Equation (4.33) is not wave-like. In order to illustrate possible
scenarios for which F (2)

1c < 0, Figure 3 shows F (2)
1 and F (2)

1c against kh for a variety of angles
of propagation and normal stretches, respectively.

We remark that in [14] it is shown that in the analogous plain strain case the existence
of negative group velocity also changes the associated governing equation for the long wave
amplitude from hyperbolic to elliptic. It should be stressed that the governing Equation (4.33)
is only valid in the vicinity of the cut-off frequencies. Further work is therefore required to
elucidate fully the implications of its change in type on dynamic response.
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Figure 3. The coefficients of the second-order scaled frequency expansion, associated with the first family of shear
resonances, shown for a variety of (a) angles of propagation (b) normal stretches. Waves propagate in the Varga
material with the same parameters as in Figure 2 if not specified otherwise.

6. Concluding remarks

A two-dimensional asymptotic model has been constructed to describe long-wave high-fre-
quency anti-symmetric motion in a pre-stressed incompressible elastic plate. Asymptotic ex-
pressions for the displacement components at any location within the plate have been derived
in term of the long-wave amplitude. The model contains a minimal number of essential pa-
rameters and is derived by systematic integration of approximate equations derived from the
full three-dimensional theory. The theory, which is shown to be mathematically consistent
with the higher-dimensional theory, offers a greatly simplified model for application to more
complicated geometrical structures. A particularly noteworthy feature, particularly arising
because of the pre-stress, is the possible non-standard hyperbolic governing equation for the
long-wave amplitude, with time and one of the spatial variables swapping their roles. This is
closely related to the possible existence of negative group velocity. This type of methodology
is particularly applicable to fluid-structure interaction, especially for jumps in radiation power
and first-order resonances of high-frequency Lamb waves in scattering problems. It will also
be especially applicable for certain types of dynamic load, for which this motion may dom-
inate within the structural response. Of course, for any general load, all wavelengths and
frequencies will in general be excited. Even for the most general load, however, this model
will provide an excellent estimate of the transient response specifically associated with the
long-wave high-frequency regime. Further details of these and other potential applications, in
respect of linear isotropic theory, may be found in [2].
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